

DECLARATION

- Our aim is to train you to use and understand GGIR for your research
- Focus on common use-cases of GGIR
- If you have questions? Feel free to post them in the chat, we will try to answer
- We will have 1-2 short breaks today

3

- \bullet We will $\underline{\text{NOT}}$ record the video session
- Please do **NOT** record this training and share publicly
- Slides are available as PDF \Rightarrow https://www.accelting.com/ggir-standard-training/

5

7

21/11/2023

In-built functionality to read

- Axivity data (.cwa, .wav, and .csv)
- ActiGraph data (.gt3x and .csv)
- GENEActiv data (.bin)
- GENEA data (.bin)
- Movisens data (folder with inside .bin)

And other csv files

- csv's with acceleration data independently of the Brand
- \bullet Flexible to variety of data formats

16 17

18 20

24 25

26 27

30 3

32 33

36 37

38 39

42 43

Data quality • Calibration of the accelerations • Nonwear detection

44 45

Data qualityCalibration of the accelerationsNonwear detection

46 48

Non-wear time detection

| Adata quality and metrics windowsizes = (15, 900, 3600), nonwear_approach = "2013", [_]
| Is fin at least 2 sensor axes | standard deviation per hour [3600 seconds] = noise (noise threshold specific for each bound of the content of th

Non-wear time detection

Device noise = 13 mg (0.013 g)

2

3003 (00 min)

2

3003 (00 min)

2

3003 (00 min)

3003 (00 min)

2

3003 (00 min)

3003 (00 min

49 50

Non-wear time detection

Device noise = 13 mg (0.013 g)

Non wear

SD, = 0.007

SD,

51 52

57 58

59 60

61 6.

Pormula: $\max_{x \in \mathcal{S}} \left\{ \sqrt{acc_x^2 + acc_y^2 + acc_x^2} - 1,0 \right\}$ Representation of the following property of the follow

Acceleration metrics in GGIR Magnitude-based removal Frequency-content based removal of gravity of gravity BFEN, BF_X, BF_Y, BF_Z HFEN, HF_X, HF_Y, HF_Z ENMOENMOa • LFENMO HFEN₊ MAD (Brond counts) No attempt to remove gravity EN
LF_X, LF_Y, LF_Z
LFEN Neishabouri counts Zero-crossingZero-crossing counts $\bullet \quad ZC_{x}, ZC_{y}, ZC_{z}$

63 64

65 66

Why do we aggregate per epoch?

- Reduces dependency on sampling frequency, which varies between studies
- Evidence on the value of raw accelerometer data primarily based on epoch aggregates

70 71

72 73

Need to select/mask data

- Non-wear detection may not be perfect
 - Accelerometer may be in the mail
 - Accelerometer may be left in a bag
 - Recording is expected to run longer than wear instruction
- Some days may be expected to include non-representative data
 - Participant is invited to come to the clinic

Available options in GGIR to select/mask data

- Exclude X hours from start
- Exclude X hours from end
- Exclude all data before first and after last midnight
- Exclude all data before first midnight
- Include X days with the highest activity levels
- Include only first X 24 hour blocks in data
- Include only first X calendar days

Set maximum number of days or calendar days

[_]
Study protocol
maxdur = 0,
max_calendar_days = 0,
[_])

76 77

78 79

82

84 87

90 91

				ua	Ld	ро	1111	.3
r was not worn on	Thursd	ay fron	1 9:00 t	0 930	AM			
,								
	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Avq
9:00:00 - 9:00:05	3	4	3	2.2	2	0	1	2.2
9:00:05 - 9:00:10	3	5	2	2	1	0	1	2
9:00:10 - 9:00:15	2	4	2	1.8	1	0	2	1.8
9:00:15 - 9:00:20	3	4	3	2.3	2	1	1	2.3
		_			-	-	-	_
-	-	-	-	-				

92 93

Acceleration distribution

• Quantiles
• Intensity levels
• Intensity gradient

96 97

Acceleration distribution

• Quantiles

Percentiles of acceleration over the day (e.g., percentile 0.5 refers to 12 hours (i.e., 0.5 over 24 hours))

• Intensity levels

• Intensity gradient

MX metrics

M120 = (24 - 2) / 24 - 0.917

MATERIAL CONTROL

Enhancing the value of accelerometer-assessed physical activity: meaningful visual comparisons of data-driven translational accelerometer metrics

MATERIAL CONTROL

Enhancing the value of accelerometer-assessed physical activity: meaningful visual comparisons of data-driven translational accelerometer metrics

98 99

Acceleration distribution

• Quantiles
• Intensity levels
• Intensity gradient

• Output levels
• Intensity gradient

• Output levels
• Intensity gradient

• Output levels
• Intensity gradient

102 103

Acceleration distribution

• Quantiles
• Intensity levels
• Intensity gradient

GGIR

| Physical activity and acceleration distribution qlevels = clos, 50, 70, 90, 905, illevels = clos, 50, 100, 200, 8000), iglevels = 1,

104 105

Windows definition

The argument qwindow
Numeric or character (default = c(0, 24)).

GGIRt

LJ

qwindow = c(0, 24),

LJ

and and an argument qwindow

Numeric or character (default = c(0, 24)).

Golden to the control of the control

108 109

110 111

114 115

Assignment 1

1. Open RStudio and an empty script
2. Create a GGIR function call
3. Define datadir and outputdir
1 Tip : datadir should specify the path to out demo file
2 Tip : outputdir should be an existing folder (different to datadir)
4. Define mode to run GGIR parts 1 and 2
5. Make sure you only analyse data from the first midnight onwards
6. We are only interested in the analysis of the first 3 days.
7. Run the script via the source button
8. Advanced: Look up the output and meaning of variables
9. Optional: Try to run GGIR parts 1 and 2 on your own data

116 117

